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Isonucleosides by Michael Addition of Pyrimidine Bases 
on 2,6-Disubstituted 2H-Pyran-3(6H)-ones 
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Abstract : A short, stereocontrolled convergent synthesis of pyranosyl isonuclensides, based on a Michael type 
addition between a silylated pyrimidine base and an unsaturated pyran-3(6H)-one is described. Diastereomerie 
ratio are of 90/10 up to 100/0, providing a straightforward way to prepare new nucleosides analogues. 
© 1997 Published by Elsevier Science Ltd. 

In recent years, there has been a growing interest in 2'3'-dideoxynucleosides (e.g. AZT, ddI, ddC, D4T) 

as reverse transcriptase inhibitors of  H/V-1 infections. These compounds are prepared by structural modifica- 

tion of  naturally occuring nucleosides (linear route) or through glycosylatiun reactions I (convergent synthe- 

sis), the last strategy allowing structural variations in the nucleobase moiety and in the carbohydrate part, to 

be achieved. In order to control the stereoselectivity to obtain the more biologically active [~-anomers, authors 

have investigated different routes as, for instance, fixation at position 2' of  a group able to provide the well 

known anchimeric assistance, and could be eliminated or reductively removed. 2 

As part of  our continuing work on the synthesis of  optically active furyl-alkylcarbinols 3, we were inter- 
. 4 

ested in the behaviour ofpyran-3-(6/-/)-ones, from which they are statable precursors. Pyranones 1-3 seemed 

to us key intermediates for synthesis of  i so-deoxynucleos ides  of type I, a rather rare class of  nucleosides sho- 

wing significant and selective anti-HIV activity 5 as well as appearing upstream precursors of  interesting rela- 

ted nucleotides 6. Feringa et al. 7 have particularely shown that for pyran-3-une 4, the 6-alkoxysubstituant 

exerts complete stereocontrol in n face selective additions of  butadiene (Diels-Alder) or nitroethane 

(Michael) to this enone. Also of  interest in this area, Horton's 8 and Herradoffs 9 groups have discussed the to- 

tal facial stereoselectivity induced by 7 substituents present on neighbouring unsaturated lactones. 

O HO OH B 
I <OH]  ~ 

R 1 O H ~ ~ . , ~  
° 

1 R 1 = Et R 2 = TBDMS (13) ( ~ R  1 

2 R 1 = Et R 2 = Piv (14) B, nucleobase 
3 R 1 = i-Pr R 2 = TBDMS type I 
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Consequently we studied the diastereoselective conjugate addition of bis-silylated-uracil, 

-5-fluorouracil and -thymine to enantiomerically pure ct-anomers of pyran-3-ones 1-3 as Michael acceptors, 

to yield isonucleosides of type I that have not been reported previously. 

Optically pure pyran-3-ones 1-3 (alkyl (6-O-protected)-2,3-dideoxy-u-D-glycero-hex-2-enopyranosid- 

4-ulo-ses) were obtained from tri-O-acetyl-D-glucal 5 via the Ferrier rearrangement 10 as the key reaction. 

Thus 5 was converted into ethyl (or isopropyl) pyranosides 1-3 in four steps involving : a) iodine-catalyzed 

glycosylation of ethyl (or i-propyl) alcohol by the method of Koreeda II, b) hydrolysis 12 into 6 (or 7), c) selec- 

tive 6-OH protection with tert-butyldimethylsilyl group (TBDMSCI, Et3N/cat. DMAP) 13 or as a pivalate 

(PivC1, py.)14 and d) pyridinium dichromate (PDC) oxidation 14 of 4-OH (sugar nomenclature), ct-Anomers 

of these pyran-3-ones 1-3 (overall yield a --)d 55-60%) were purified by silicagel column chromatography.15 

When pyranones 1-3 were allowed to react in the presence of trimethylsilyl triflate-catalysis as a Lewis 

acid with bis-silylated nucleobases 8a-c (prepared in situ with an excess of N,O-bis(trimethylsilyl) acetamide 

in dry MeCN 16 the Michael adducts 9-15 were formed (Table 1). 

Ac O 

OAc 

OSiMe 3 

OSiMe 3 
a,b ~ c,d 

= OR 1 ~ 1 - 3 e 
- -  8a R 3= H (uracil) 

OH cdl3 = 85:15 8b R 3=- F (5-fluorouracil) 

6 R 1 = Et 8c R 3=- Me (thymine) 

7 R1 = i-Pr 
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Et 
Et 
Et 
Et 
i-Pr 
i-Pr 
i-Pr 

R 2 

TBDMS 
TBDMS 

Piv 
Piv 

TBDMS 
"I'BDMS 
TBDMS 

B 1' 

R 1 
R 3 

H 9 
Me 10 
H 11 
Me 12 
H 13 
F 14 
Me 15 

NaBI--I 4 
I=, 
HnR•o TBAF HHoC~ O 

x---Vt~R1 NaOH x - - - v  ~)R1 
(for 18-19) 

16 23 
17 24 
18 23 
19 24 
20 25 
21 26 
22 27 

The results displayed in Table 1 show that the d.r.'s of the adducts 9-15 are within the range 89-100 %. 

TMSOTf 17 allows extremely mild nonbasic Vorbriiggen reaction conditions 18 that gave in each case a very 

large excess of the diastereomer with the attached base trans with respect to the aglycon. 19 An attack by the 

side leading to the thermodynamically more stable cis-isomer cannot be ruled out as the cause of its appearen- 

ce in variable proportions in the crude products. The separation of diastereomers (for 10/10', 11/11' and 

13/13') was complicated by the tendency to give sometimes extensive retro-Michael decomposition on chro- 

matography supports (Merck silica gel 60). 
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Table 1 - -  Michael addition of  sil, 

Entry 

'lated bases on pyran-3-ones 1-3. 

Pyran-3-one Silylated base Adduct* 

1 8a 9 

1 8e 10 (+10') 

2 8a 11 (+11') 

2 8c 12 

3 8a 13 (+13') 

3 8b 14 

3 8c 15 

Yield d.r. %** 

62 100/0 

83 94/6 

72 90/10 

64 100/0 

94 89/11 

66 100/0 

58 100/0 

R 1 R 1 

9 - 1 5  10' 11' 13' 
(minor  isomers) 

* reactions were carried out under 1-3 mmol scale, sugar/base = 1:1 (see ref.20 for a typical procedure) 
**diastereomeric ratio based on IH NMR analysis - -  see ref. 29 for selected data. 

Crude 9-15 were  therefore used as such in the subsequent  step. Reduct ion o f  the carbonyl group with 

NaBH 4 o f  these adducts furnished a high d.c. in favour o f  the cis-C-4'/C-5' isomer,  as revealed by nOe diffe- 

rence spectroscopy. 21 This equatorial reduction to give the axial alcohol predominated  in all cases 

(c is / t rans-C-4 ' /C-5 ' -85/15)  22, thus leading to an inversion at C-4' when  compar ing to 5, giving so alkyl 

2'3'-dideoxy-2'-pyrimidyl-c~-D-lyxo-hexopyranosides. Isolated yields o f  16-22 after column chromatography 

range from 45 to 80 %. Cleavage o f  the silyl-group by te t rabutylammonium fluoride 23 or pivalate by hydroal- 

coholic sodium hydroxide 24 gave, inf ine,  almost  quantitatively, 23-27. 

In summary,  this strategy (seven synthetic steps from a commercia l ly  available compound)  compares  

well with the few other diastereoselective syntheses 25"28 that give nucleosides mimics  with a C-2'/N-1 bond. 

A c k n o w l e d g m e n t .  We are grateful to Pr. F. Huet f o r  helpful discussions and N M R  studies. 
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